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Abstract 

It is shown that the method of solving the temperature integral in a standard kinetic 
equation for non-isothermal conditions affects the value of the estimated activation energy 
E and the frequency factor A for the known mechanism of conversion. A compensation 
dependence is suggested as a control test, as well as a kinetic equation solution derived 
from Coats-Redfern considerations. 

INTRODUCTION 

Most frequently, the standard kinetic equation for non-isothermal condi- 
tions, also called the kinetic temperature equation, is presented in the form 

dcu A 

z-q 
_ -f(a) e-E/RT l_Y E (0, 1) (1) 

(1’) 

which after the separation of the variables, may be presented as follows: 

/ 

da A 
-=- 
f(Q) 9 / 

epEIRT dT + C 

J 
a da A T 

-=- 
/ 0 f(a) 4 Tp 

e-E/RT dT 

(2) 

(3) 
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The importance of the temperature T, for homogeneous reactions taking 
place in the liquid phase is expressed in the form [l] 

T= T,+qr when q > 0 (4) 

Assuming in eqn. (1) that 

cu=l-x (5) 

and 

f(a) = (1 -a)” =xn n>O (6) 

for T = T,, the pertinence of the following relationships (we omit the 
proof) may be demonstrated: 

n(l - a,y = 1 

1--(Y,=e-r 

as well as 

when n # 1 

when n = 1 
(7) 

In the present considerations, condition (8) must be fulfilled by eqns. 
(l)-(3), taking into account eqn. (6). 

Equations (2) and (3) are expressed as follows: 

for n # 1 
C, _ (1 -4-n 

1-n 
for 12 = 1 C, - ln(1 - cy ) 

= G(cw) = :1(T) 

for n # 1 
1 - (1 - cX)*-n 

l-n 
for n = 1 -ln(l -a) 

‘g(a) = tJ(T) 

(9) 

The intermediate stages of the solutions are given in the Appendix. 

VERSIONS OF THE KINETIC EQUATION SOLUTIONS 

According to eqn. (9), taking into account eqns. (7) and (81, we obtain 

ART’ 
(34 = qE -e-E/RT[l -S(T)] + S(T,) (11) 
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where 

S(T)= E (-l)N+l(N+l)! ; 
i i 

N 

(12) 
N=l 

The series (12) is convergent only for RT/E = 0 (T = 0). For 0 < RT/E < 
0.3 its partial sum containing at least the first two terms takes the values in 
the range 

2RT 
E > S(T) > 0 whencoz+N>2 (12’) 

Similarly, according to eqn. (10) we obtained 

g(a)=$(T2 e- E/RT[l -S(T)] - T,’ ePE/R’n[l - S(T,)]} (13) 

2RT, 
E > S(T,) > 0 

After determining 

(13’) 

the integration constants C, and C, we may compare 
eqns. (12) and (131, as a result of which an absurd dependence is obtained: 

S(Tm) + 
ART; 
---e-E/RG[ 1 - S(T,)] = 0( > 0) 

qE 
(14) 

Dependence (14) is also obtained from eqn. (3) or eqn. (10) assuming 
different upper limits of integration (a = CX,, T = T,) and conditions (5), 
(6), (7) and (8). S ome authors accept the value 2RT/E = constant [2,3], 
though others omit it completely (2RT/E = 0 [4,5]), from which it results 
that Tp + 0. As a result we obtain a simple expression: 

ART2 
g(a) = TeeEyRT 

lnm -=ln!J--& 
T2 

(15) 

05’) 

Version B 

According to eqn. (91, taking into account eqns. (7) and (8) we obtain 

G(a) = $T eeEiRT + 1 - g 
m 

for IZ = 1 

and according to eqn. (10) 

(16) 

g(a) = t(T e -E/RT _ T 
P 

e-E/RTp (17) 
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In a further procedure, similar to version A, from the comparison of eqns. 
(16) and (17) we obtain 

(18) 

From eqn. (18), by the iteration method, we may try to estimate the value 
T,, whereas it is more convenient to omit in eqn. (17) the second term in 
the parentheses and assume that 

AT 
g((;y) z qe-E/RT 

In g(a) 

T 

(19) 

(19’) 

Version C 

According to eqn. (lo), assuming TP = 0 and Doyle’s approximation [6] 
(see Appendix) we obtained 

g(a) = 0.00484AE e-l.O516E/RT 

qR 

for 20 < E/RT < 60 

0.00484AE 1.0516E 
In g(Ly) = In 

qR - RT 

(20) 

PO’) 

Equations (151, (19) and (20) may be presented in the following linear form: 

In g(cy) -m In T=ln constant - $0 +p) (21) 

where for m = 0, p = 0.0516, and for m = 1 or 2, p = 0. 
The problem was formulated in a similar way by Popescu et al. [7]. 

Other versions of the solutions 

According to Horowitz and Metzger [8] or to Fedoseev et al. [9] for 
T 4 2T,, an approximation of the subintegral function has been assumed: 

e -E/RT = eE/RTm eE/RT;(T- T,) 

and making use of eqn. (8) we obtained directly 

g(a) = e 
E/RT,,$T-T,,,) (22) 



A. Mianowski and T. Radko / Thermochim. Acta 204 (1992) 281-293 285 

However, Van Krevelen et al. [lo] assumed for 0.9 < T/T,,, < 1.1 a different 
approximation of the subintegral function: 

T E/W,, 
e-E/RT = e-E/RT, _ 

i i L 

As a result of integrating according to eqn. (lo), for Tp = 0, we obtained 

g(a) = 

ART,2 

@+RT’,) 

However, it should be noted that if T = T,, then g(a,) = 1; thus 

(23) 

l= 
ART,' e-E/RTm RTm 

q(E +RT,) 
or -z 0 

E 

Hence eqn. (23) may also be expressed as 

If in eqn. (22) we assume the approximation 

(24) 

with the constraint 0 < (T/T,) I 2, then we obtain a modification in a form 
close to eqn. (24): 

T (E/RT,J 

s(a) = T 

i i 
(25) 

m 

The linear forms of eqns. (22) and (24) may additionally be estimated by 
a compensating calculation for a straight line crossing the point with 
coordinates (0, O), which is an obvious advantage of the models 

ln g(4 = &CT- T,) 
m 

In g(a) = & 
m 

lnf 
171 

(22’) 

(25’) 

in which, when T = T,, then In ,g(a,J = 0. 
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EXAMPLE 

In investigations on the thermal decomposition of D-glucose at a heating 
rate of 4 = 0.5 K min-’ the following average results were obtained [ll]: 
E = 124.91 kJ mol-‘; In A = 30.92 (A in min-‘1; variable order of reaction 
n = 1, 5/4, 3/2, 7/4, 2. 

Determining the degree of conversion defined as 

‘mass decrement in the temperature range from Tp to T(%) 

a = total mass decrement in the conversion from Tp to Tk(%) 

and assuming, in accordance with the suggestion of the previous investiga- 
tions, that the reaction order IZ is two [12], confirmed by condition (7) for 

x??l = 0.5 at a temperature T, = 467 K, the kinetic parameters were searched 
for (E, In A) making use of suitable equations with various estimating 
techniques. The results of the calculations are presented in Table 1 and 
plotted as In A vs. E in Fig. 1. 

DISCUSSION AND SUMMARY 

The isokinetic effect or the law of compensation [13-S] is expressed by 
an empirical dependence 

In A=a+bE (26) 

TABLE 1 

Kinetic parameters resulting from regression estimation a 

No. Coordinates Equation no. E (kJ mol-‘) In A r* (p’) (%) b 

1 
1 In ru’-21x1(1-cr)vs. T 1’ 147.58 34.90 96.41 

2 In5 -2lnT vs. G 
1-a 

21 133.49 31.13 99.62 

m=2p=O 

3 lncu -InTvs. $ 21 137.36 99.64 
1-ff 

28.59 

m=lp=O 
1 

4 lncY vs. - 21 134.30 31.38 99.64 
1-a T 

m = 0 p = 0.0516 

ff 5 In __ vs. T - T, 22’ 141.79 33.28 
1-a 

(99.72) 

T 
6 In5 vs. In - 24’ 141.56 

1-a T, 
33.24 (99.66) 

T 
7 lrrL 33.24 

1-a 
vs. ln- 

Gl 
25’ 137.68 (99.66) 

a Data as reported previously Ill]. 
b The values r2 describe the statistical determination for a straight line plot not crossing 

(0, 0); p2 values (in parentheses) are for straight line plots crossing (0, 0). 
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In A 

26 E, kJ/mol 

25 “‘!‘:‘:“““‘:“- 
132 134 136 138 140 142 144 146 148 150 

Fig. 1. Estimated kinetic parameters plotted as In A vs. E. 

In general, dependence (26) refers to the same chemical reaction but with 
the reaction taking place under changed conditions [13,14], or to substances 
with similar chemical structures, e.g. complex compounds, coal tar, pitch 
etc. [14,15]. 

From Arrhenius’ law or from condition (8) we may derive the equations 
that explain the linear form of eqn. (26): 

E 
lnA=lnk,+- 

W, 

qE E 
lnA=ln- - 

RT,2 + RT, 

(27) 

in which the subscript m refers to the maximum rate of the reaction. 
Especially interesting for both eqns. (27) and (8’) is the formulation (Fig. 1) 

alnA 1 
---=- 

aE RT,,, (26’) 

from which it results that for the solutions fulfilling eqn. (26), it is possible 
to determine the temperature of the maximum rate of the reaction. Thus, 
in accordance with the example given, T,,, = 467 K was determined, and 
from eqn. (26) T, = 454.7 K (AT, = 12.3 K> was calculated. Equation (26) 
confirms only the correctness of the estimations of the parameters of eqn. 
(1). In general, a straight line with a very high coefficient of correlation is 
obtained through an assessment of parameters according to several equa- 
tions, viz. eqns. (151, (20), (22), (241, (251, and possibly eqn. (1’) (with eqn. 
(6)). It may b e shown that a small deviation of the estimations from the 
straight line (eqn. (26)) affects very strongly the value of T, even by some 
tens of degrees Kelvin. Thus we should not assume that the dependence 
analysed is unrestricted. 
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In eqn. (10) it may also be easily seen that the right-hand side of the 
equation is the product of a very large quantity (A) and a very small one 
J(T)-the imperfections arising from the solution of the integral affect the 
remaining estimated quantities. It is only fitting to remark that one more 
formal meaning has been ascribed to eqn. (26). 

To make use of the information from eqn. (26), the solution of the 
integral of eqn. (15) has been modified through the introduction of the 
temperature T, [&lo], e.g. by multiplying both sides of the equation by the 
factor Tz. After applying condition (8) we obtain the form 

which for practical purposes it is convenient to present in the form 

In g(a) + 2 ln$ = & 
m i 1 

l-$ 

(28) 

(28’) 

or 

In g(ru)+21nT, vs 
T) +-$) 

Dependence (28’) may be estimated similarly to the forms (227, (24’) and 
(25’). Figure 2 presents the example analysed in the coordinates (28’). 

Fig. 2. Relationship between Ma /Cl - cu))+ 2 In(T,,, /T)) and (1 -CT, /T)) values. 
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After certain transformations it is also possible to demonstrate a close 
relationship between eqns. (28) and (24) or (25), namely at the constraint 
0 < (TJT) G 2 the approximation 

I-% = -ln+ 

reduces eqn. (28) to the form 
T (E/Rr,+2) 

g(a)= T 
i I 

(29) 
m 

Finally, the solution of the kinetic temperature equation (eqn. (1)) with 
due consideration to condition (8), may be presented in the form of a 
general mathematical equation: 

We may thus obtain the forms of equations presented by different 
authors: from eqn. (22), L = 0 (Horowitz-Metzger [8,9]); from eqn. (24) 
L = 1 (Van Krevelen et al. [lo]); from eqn. (15) L = 2 (Coats-Redfern [2,3] 
in the formulation presented in the present paper (eq. (28)). 

Thus it is possible to make an assessment of the calculations of the 
activation energy presented by Zsako [14], and of the considerations of 
Agrawal [16] on the compensating effect resulting from the mathematical 
formalism assumed. 

The exponent (E/RT,J + L explains the “variability” of the activation 
energy on account of parameter L, namely (Fig. 3) 

E = RT,(rgcp - L) 

Fig. 3. Geometric meaning of the L parameter and its influence on the estimated kinetic 
parameters E and A. 
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Correspondingly, from condition (8) we obtain 

In A=ln++Tgq--L+ln(tgy2-L) 
m 
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APPENDIX 

It may be shown that the integrals presented in eqns. (9) and (10) 

I(T) = _/eWEIRT dT (Al) 

J(T) = /:,-EIR’ dT (A4 
a 

can be reduced to version A, B or C by using the substitution 

u = E/RT up = E/RT, dT= -(E/RT)u-2 du 

Version A 

I(T) = - 5/epUu-2 du 

J(T) = g ( ]me-Uu-z du - /me-Uu-2 du) 
U UP 

W) 

644) 
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Using the procedure of n-fold integration by parts </e 
obtains a solution expressed by means of an asymptotic series 

I(T)=qg( l-;+$-; +Q 1 
where 

Q = (i)( - 1).p+1s!/eeuu-(s+2) du for s = 4 

while for s > 4 

lim Q = 0 
S--t== 

As a result we obtain 

RT2 
I(T) = E -e-E/RT[l -S(T)] 

and correspondingly 

RT2 
J(T)= E 

RTp’ 
e-E/RT[l -S(T)] - -e-“/‘q[l- S(T,)] 

where S(T) is expressed by eqn. (12). 

Version B 

I(T)= -i(-e-“up’-ISi( 

where [17] 

Ei( -u) = /e-Y.-’ du 

According to ref. 18 for large values of u (u > 5) we have 

_Ei(-u) =e-“u-l l_ A! + Tj- - !J + ... 
i U i 

--u 

291 

du) one 

(A5) 

(A61 

(A? 

W) 

W) 

We obtain eqn. (A6) by inserting the series (A91 into eqn. (AS), but with 
the approximation (u + 1)/u = 1 in eqn. (A8) we integrate by the parts 
/ du and obtain 

Ei(-u)=epu+/epu(~) du=O (AlO) 

Finally 

I(T) = T edEIRT (All) 
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and, correspondingly 

J(T)= T e-E/RT- Tp e-E/RT, 
(fw 

Version C 

It may be shown for the integral (31) that when Tp = 0 

J(T) = i/me-uu-2 du = ip(u) 
U 

According to Doyle [6] the function p(u) is expressed as 

lg p(u) = -2,315 - 0.4567~ for 20 < u < 60 

and thus 

p(u) = 0.00484 e-‘.o5’6u 
E 

where u = - 
RT 

LIST OF SYMBOLS 

6413) 

@14) 

W5) 

a, b 
A 

C, C,, c, 
Ei( - u) 

;a, 

:(‘T”17 G(a) 
J(T) 
k 

L 
P(U) 

4 

6 (PI 

R 
T 
X 

a! 

a' 

50 

7 

constants in eqn. (26) 
coefficient of frequency (mm-‘) 
constants of integration 
Euler’s function 
activation energy (J mol-‘) 
function symbol of the argument (Y 
weight integrals 
indefinite integral of argument T 
definite integral of argument T 
rate constant (min-‘1 
order of the reaction 
natural value 
approximating function of Doyle according to ref. 6 
rate of heating (K min-l) 
coefficient of correlation of straight line (crossing point with 
coordinates (0, 0)) (p> 
universal gas constant, R = 8.314 J mol-’ K-l 
absolute temperature (K) 
normalized mass decrement, x E (1, 0) 
degree of transformation, (Y E (0, 1) 
reaction rate, (Y’ = da/dT (K-l) 
angle of inclination of the straight line 
time (mini 
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Subscripts 

k 
m 

P 

final conditions 
maximum reaction rate 
initial conditions 


